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Abstract

The transient natural convection boundary-layer flow adjacent to a vertical plate heated with a uniform flux in an initially linearly-
stratified ambient fluid with Prandtl number (Pr) smaller than one is investigated by scaling analysis and direct numerical simulation. The
dominant parameters characterizing the flow behavior are the plate temperature, maximum vertical velocity, thermal boundary-layer
thickness, whole and inner velocity boundary-layer thicknesses, and the corresponding time scales featuring these stages. Scaling laws
relating these parameters to the flow governing parameters, that is Prandtl number and the dimensionless temperature stratification
parameter have been obtained and validated against an exact solution and against a series of direct numerical simulations. It is shown
that the scaling laws provide a good description of the flow behavior for start-up, transition and fully developed steady state. Both the
scaling and numerical simulations show that the boundary layer is one dimensional away from the plate origin during start-up and at
steady state, and two dimensional near the plate origin.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

The natural convection boundary-layer flow generated
in a fluid adjacent to a heated, vertical semi-infinite plate
is one of the fundamental flows in heat and mass transfer
[1–5]. Most studies have examined the fully developed flow
with relatively few investigations of the transient response
to impulsive heating. In this study the transient response
of a stably stratified fluid adjacent to a vertical semi-infinite
plate subjected to an impulsively applied constant heat flux
boundary condition will be investigated for low Prandtl
0017-9310/$ - see front matter � 2007 Elsevier Ltd. All rights reserved.
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number ðPr < 1Þ. Flows with Pr < 1 have many important
applications; in particular liquid metals with Pr � 1 have
been used for rapid cooling in nuclear reactors [6–8].

Semi-analytic solutions for the steady flow adjacent to a
constant heat flux vertical semi-infinite plate have been
obtained by a number of workers by reducing the govern-
ing equations to a set of ordinary differential equations
which are then integrated numerically [9,10]. Such an
approach can be used to obtain the solution at specified
Prandtl number, but does not provide scalings, and has
also been shown to have difficulty dealing with very small
Prandtl numbers [10]. Additional investigations of the
steady flow have been carried out using the integral method
of Kármán–Pohlhausen (see, e.g. [11,2]) and using singular
perturbation techniques [10,12–17]. These results did not
provide explicit Prandtl number scalings.

mailto:wenxian.lin@jcu.edu.au


Nomenclature

g acceleration due to gravity
he height of extra domain region
hp height of computational domain
lw length of extra domain region
L characteristic length
N Brunt-Väisälä frequency
p P=ðqV 2

0Þ
P Pressure
Pr Prandtl number, m=j
Re Reynolds number, V 0L=m
s temperature stratification parameter, T Y =T 0

X
t time
tp oscillation period
ts time scale attaining steady state
T temperature
T perturbation temperature
T y ambient temperature gradient
Tw plate temperature
T 0

X temperature gradient across plate
u, v U=V 0, V =V 0

U horizontal velocity
vm V m=V 0

V vertical velocity
Vm maximum vertical velocity
V0 characteristic velocity
x, y X=L, Y =L

X horizontal coordinate
Y vertical coordinate

Greek symbols

b thermal expansion coefficient
dT, dv, dvi DT =L, Dv=L, Dvi=L
j thermal diffusivity
m kinematic viscosity
h T =ðT 0

X LÞ
q fluid density
s, sp, ss t=ðL=V 0Þ, tp=ðL=V 0Þ, ts=ðL=V 0Þ
DT T 0

X DT

DT thermal boundary-layer thickness
Dv outer velocity boundary-layer thickness
Dvi inner velocity boundary-layer

Subscripts

t, X, Y first partial derivative with respect to t, X, Y
s, x, y first partial derivative with respect to s, x, y

xx, yy second partial derivative with respect to xx, yy

XX, YY second partial derivative with respect to XX,
YY

,e at the end of start-up stage
,p half-period of oscillation
,s at steady state
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Park and Carey [13] combined a matched asymptotic
expansion technique with an explicit finite-difference
scheme to investigate the transient natural convection flow
near a vertical surface at low Prandtl number; Sammouda,
Belghith and Surry [8] used a finite element simulation to
investigate the transient natural convection of low Prandtl
number fluids in a heated cavity; The low Prandtl number
natural convection in volumetrically heated rectangular
enclosures with different aspect ratios was explored by
direct numerical two-dimensional simulation by Piazza,
Ciofalo and Arcidiacono [18–20].

The investigations cited above focused on the unsteady
natural convection boundary-layer flow in an initially qui-
escent homogeneous ambient fluid. However, in many
problems of practical interest the ambient fluid is at a
non-uniform temperature, and is typically stably stratified.
Park and Hyun [21,22] investigated the transient adjust-
ment process of an initially stationary and stably stratified
fluid in a square container with highly conducting bound-
ary walls, while Chamkha [23] investigated the laminar
hydromagnetic natural convection flow along a heated ver-
tical surface in a stratified environment with internal heat
absorption. Shapiro and Fedorovich [24] obtained the
exact solution for the start-up and transition to steady state
for the natural convection flow adjacent to an infinite ver-
tical plate with stratified ambient using a Laplace trans-
form technique that could only be applied at Pr ¼ 1. In a
later paper [25] they used a regular perturbation expansion
to extend the solution to Prandtl numbers near Pr ¼ 1 and
obtained numerical solutions for Pr ¼ 0:71 and 7.1. The
natural convection boundary-layer flow of an initially line-
arly-stratified Newtonian fluid adjacent to an infinite verti-
cal plate heated with a uniform flux at steady state has an
exact one-dimensional solution [26] which will be detailed
in Section 2.5. This steady-state flow behavior was investi-
gated by Bejan [4] using a scaling analysis to obtain scaling
laws for the dominant parameters characterizing the
steady-state flow behavior and it was found that these scal-
ing laws are in agreement with the exact solution.

It is therefore clear that the natural convection flow
adjacent to a heated vertical plate has received considerable
attention. However there has been no study that examines
the Prandtl number effect on the flow behavior adjacent to
an evenly heated semi-infinite plate with a stratified ambi-
ent for low Prandtl numbers for the complete problem of
start-up, transition and full development, which motivates
the present investigation.

In this study, we will develop various scaling laws for the
dominant parameters characterizing the transient behavior
of an unsteady natural convection boundary-layer flow of
an initially linearly-stratified Newtonian fluid with Pr < 1
adjacent to a semi-infinite vertical plate heated with a
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Fig. 1. Schematic depiction of the physical system considered.
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uniform flux, using the techniques detailed by Patterson
and Imberger [27] and Bejan [4]. A series of direct numer-
ical simulation (DNS) with selected values of Pr and strat-
ification parameter s in the ranges 0:01 6 Pr 6 0:5 and
0:2 6 s 6 5 will be carried out to verify and quantify the
scaling laws, where s is a dimensionless temperature strati-
fication parameter representing the relative magnitude of
the background stratification with respect to the tempera-
ture gradient across the plate. The exact solution given in
[26] for the steady-state one-dimensional flow behavior will
also be used to benchmark our DNS results and to validate
those scaling laws obtained from the scaling analysis in this
specific flow regime. This approach will be similar to that
employed by Lin and Armfield [28–31] in an investigation
of the transient cooling of an initially homogeneous fluid
with Pr P 1 by natural convection in a vertical circular cyl-
inder and in a rectangular container, and by Lin et al. [32]
for an investigation of a vertical isothermal semi-infinite
plate in a linearly-stratified fluid with Pr > 1.

The remainder of this paper is organized as follows. The
scaling analysis and the exact solution of Prandtl [26] are
presented in Section 2. The numerical methods and the
DNS results benchmarked against the exact solution are
described in Section 3. The scaling laws are then validated
and quantified in Section 4 by a series of DNS results with
selected values of Pr and s mentioned above. Finally, con-
clusions are presented in Section 5.

2. Scaling analysis

Under consideration is the unsteady natural convection
boundary-layer flow of a linearly-stratified Newtonian fluid
with Pr < 1 adjacent to a semi-infinite vertical plate heated
with a uniform heat flux (see Fig. 1). The fluid is assumed
to be two-dimensional and is initially at rest. The back-
ground stratification and the uniform heat flux imposed
on the plate are quantified respectively by the vertical tem-
perature gradient T Y and the temperature gradient across
the plate T 0

X . Both T Y and T 0
X are assumed to be constants.

The governing equations of motion are the Navier–
Stokes equations expressed in two-dimensional incom-
pressible form with the Boussinesq approximation for
buoyancy, which together with the temperature transport
equation are as follows,

U t þ UU X þ VU Y ¼ �
1

q
P X þ mðU XX þ U YY Þ ð1Þ

V t þ UV X þ VV Y ¼ �
1

q
P Y þ mðV XX þ V YY Þ þ gbT ð2Þ

U X þ V Y ¼ 0; ð3Þ
T t þ UT X þ VT Y þ V T Y ¼ jðT XX þ T YY Þ ð4Þ

where U and V are the velocity components in the X and Y

directions, t is the time, P is the pressure, b, j and m are the
coefficient of thermal expansion, thermal diffusivity and
kinematic viscosity of the fluid respectively, and g is the
acceleration due to gravity. The temperatures in the equa-
tions are represented as the sum of the ambient tempera-
ture T and a perturbation T from the ambient
temperature. The parameters which control the flow are
Pr and s, where Pr ¼ m=j and s ¼ T Y =T 0

X is the dimension-
less temperature stratification parameter representing the
relative extent of the background stratification with respect
to the temperature gradient across the plate, as mentioned
above. The initial and boundary conditions will be pre-
sented in Section 3.1.

Fig. 2 presents the DNS results of typical time series of
several dominant parameters characterizing the behavior of
the flow considered for the specific case of Pr ¼ 0:1 and
s = 1. The parameters shown are the non-dimensional plate
temperature, maximum vertical velocity, thermal bound-
ary-layer thickness, and whole and inner velocity bound-
ary-layer thicknesses as well as the time scales
representing the flow development at different stages. From
these DNS results, it is seen that after the initiation of the
flow (at t = 0), heat will be transferred via pure conduction
to a thin fluid layer adjacent to the plate and a vertical ther-
mal boundary layer forms. As the fluid within the layer has
a higher temperature than the local background fluid, the
fluid will move upwards under the influence of buoyancy,
resulting in a velocity boundary layer which develops
within the thermal boundary layer. After a short start-up
development stage, both boundary layers will undergo a
lengthy transitional stage, at which gradually decaying
oscillations dominate the flow development, as shown in
Fig. 2. When all the oscillations eventually die down, the
boundary layers attain a steady state.

The oscillations presented at the transitional stage are
the intrinsic properties of flows in stratified fluids, as
pointed out by Turner [33]. For brevity and clarification,
the parameters and the corresponding times at the end of
the start-up stage and at steady state are denoted with
the symbols ‘‘,e” and ‘‘,s” respectively in the subscripts
whereas the corresponding half-periods of the oscillations
presented in the profiles of these parameter are denoted
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Fig. 2. Typical time series of (a) plate temperature hw; (b) maximum
vertical velocity vm; (c) thermal boundary-layer thickness dT; (d) whole
velocity boundary-layer thickness dv; and (e) inner velocity boundary-layer
thickness dvi, respectively, at height y = 90 for the specific case of Pr = 0.1
and s = 1. All temperatures, velocities, lengths and times were made
dimensionless by T 0

X L, V0, L and L=V 0, respectively, where L and V0 are
the steady-state thermal boundary-layer thickness scale and vertical
velocity scale which will be defined in Section 2.4.
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with the symbol ‘‘,p” in the subscripts, as depicted in Fig. 2.
Scaling laws at different stages of flow development will be
developed in the following scaling analysis for these domi-
nant parameters which characterize the flow behavior.

2.1. At the start-up stage

The start-up stage is initially dominated by the heat
transfer via conduction through the plate, resulting in a
vertical thermal boundary layer of thickness OðDT Þ adja-
cent to the plate. Within the boundary layer, from Eq.
(4), the dominant balance for Pr < 1 is that between the
unsteady term OðDT=tÞ and the conduction normal to the
wall OðjDT=D2

T Þ, where DT ¼ T 0
X DT is the total tempera-

ture variation over the boundary layer, giving,

DT � j1=2t1=2: ð5Þ
The plate temperature Tw is then

T w � T 0
X DT � T 0

X j1=2t1=2: ð6Þ

At the same time, a velocity boundary layer forms within
the thermal boundary layer due to the buoyancy, as dis-
cussed above. It consists of an inner region and an outer
region, with the location at which the maximum vertical
velocity Vm is attained as the appropriate dividing point.
The width of this dividing location is then the inner velocity
boundary-layer thickness Dvi. Within Dvi (near the plate),
the dominant balance in Eq. (2) is between the unsteady
term OðV m=tÞ and the viscosity OðmV m=D

2
viÞ, which gives,

Dvi � m1=2t1=2 � Pr1=2DT : ð7Þ

For Pr < 1, Dvi will be always smaller than DT, meaning
that the inner velocity boundary layer is embedded within
the thermal boundary layer. Away from the plate, the vis-
cosity over the thermal boundary layer is OðmV m=D

2
T Þ and

Unsteady term

Viscosity over DT
� V m=t

mV m=ðjtÞ �
1

Pr
> 1; ð8Þ

that is, in the outer region the dominant balance is between
the unsteady term and buoyancy. So buoyancy acts to
accelerate the fluid only over the outer region ðDT � DviÞ,
which is

DT � Dvi � j1=2t1=2 � m1=2t1=2 � j1=2ð1� Pr1=2Þt1=2: ð9Þ

Therefore the appropriate buoyancy term to be used in the
balance between the unsteady and buoyancy terms in Eq.
(2) is gbT 0

X j1=2ð1� Pr1=2Þt1=2, giving,

V m

t
� gbT 0

X j1=2ð1� Pr1=2Þt1=2; ð10Þ

that is,

V m � gbT 0
X j1=2ð1� Pr1=2Þt3=2: ð11Þ

This continues until there is a balance between the convec-
tion of heat carried away by the boundary-layer flow
OðV mDT=Y þ V mT Y Þ and the conduction of heat trans-
ferred in across the boundary, that is, when

V m
T 0

X DT

Y
þ sT 0

X

� �
� jT 0

X DT

D2
T

; ð12Þ

At this time the development of the thermal boundary layer
comes to the end of the start-up stage.

The first of the advection terms is the same as that in the
non-stratified case [34], while the second is that associated
with the background stratification. If the former is domi-
nant then the boundary layer at the end of the start-up
stage will behave the same as that for the non-stratified
case [34] and DT � Y 1=5, in which case this term may be
written as

T 0
X DT

Y
� T 0

X

Y 4=5
; ð13Þ

which reduces with increasing Y. This term will therefore
be dominant for small enough Y at which the boundary
layer will behave identically to the non-stratified case. On
the other hand, if the ratio of T 0

X DT=Y and sT 0
X is small en-

ough, the second term dominates, as

T 0
X DT

Y
=ðsT 0

X Þ �
T 0

X j1=2t1=2

YsT 0
X

� j1=2t1=2

Ys
< 1; ð14Þ

for large enough Y and s and small enough t. Thus for
T 0

X DT=Y � sT 0
X , the appropriate balance is obtained from

the second of the advection terms as
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sV m �
j
DT
� j1=2

t1=2
: ð15Þ

In this paper, we will focus our study on this T 0
X DT=Y �

sT 0
X case.
Matching the two Vm’s in Eqs. (11) and (15) gives

gbT 0
X j1=2ð1� Pr1=2Þt3=2 � j1=2

st1=2
; ð16Þ

which leads to

tT ;e �
1

s1=2ðgbT 0
X Þ

1=2ð1� Pr1=2Þ1=2
: ð17Þ

tT ;e represents the time for the development of the thermal
boundary layer to come to the end of the start-up stage.

At this time, the thermal boundary-layer thickness DT ;e,
from Eq. (5), is

DT ;e �
j1=2

s1=4ðgbT 0
X Þ

1=4ð1� Pr1=2Þ1=4
; ð18Þ

and the maximum vertical velocity V T ;e, from Eq. (11), is

V T ;e �
j1=2ðgbT 0

X Þ
1=4ð1� Pr1=2Þ1=4

s3=4
; ð19Þ

the plate temperature T T ;e is then obtained from DT ;e as

T T ;e � T 0
X DT ;e �

T 0
X j1=2

s1=4ðgbT 0
X Þ

1=4ð1� Pr1=2Þ1=4
; ð20Þ

and the inner velocity boundary-layer thickness Dvi;T ;e,
from Eq. (7), is

Dvi;T ;e �
m1=2

s1=4ðgbT 0
X Þ

1=4ð1� Pr1=2Þ1=4
� Pr1=2DT ;e: ð21Þ

During the start-up stage, as illustrated in Fig. 2, the whole
(inner plus outer) velocity boundary layer for Pr < 1 will be
as wide as the thermal boundary layer due to the presence
of buoyancy, and it is therefore expected that the whole
velocity boundary-layer thickness Dv;T ;e at t ¼ tT ;e will have
the same scale as DT ;e and the scaling law (18) will also be
applicable to Dv;T ;e.

It should be noted that for Pr < 1, when the develop-
ment of the thermal boundary layer attains the end of its
start-up stage (that is when t ¼ tT ;e), the development of
the velocity boundary layer (both inner and whole) and
the maximum vertical velocity have not yet attained the
ends of their respective start-up states, that is, tvi;e > tT ;e,
Dvi;e > Dvi;T ;e, tv;e > tT ;e, Dv;e > Dv;T ;e, tm;e > tT ;e, and
V m;e > V T ;e, as will be shown in Section 4.

If we use Dvi;T ;e for the viscosity term and (DT ;e � Dvi;T ;e)
for the buoyancy term, then the ratio of viscosity and the
buoyancy at this time is

m
V T ;e

D2
vi;T ;e

=½gbT 0
X ðDT ;e � Dvi;T ;eÞ�

� mV T ;e

PrD2
T ;egbT 0

X DT ;eð1� Pr1=2Þ
� 1: ð22Þ
This is just a reflection of the fact that at this time the vis-
cosity balances the unsteady term in the inner region and
therefore also balances the buoyancy over the outer bound-
ary layer.

However, the viscosity calculated over the whole layer
(inner and outer regions) must ultimately balance the buoy-
ancy for steady state to be achieved. At this stage, the ratio
of the two terms is

m
V T ;e

D2
T ;e

=½gbT 0
X DT ;e� �

mV T ;e

D3
T ;egbT 0

X

� Prð1� Pr1=2Þ < 1 ð23Þ

for Pr < 1, which demonstrates that at this time no balance
exists between the viscosity and buoyancy.

An examination of the scaling laws (5), (6), (7), and (11)
obtained above reveals that the flow development until the
end of the start-up stage of the thermal boundary layer is
one-dimensional and independent of Y. However, at the
end of the start-up stage, this one-dimensional structure
will be true only for T 0

X DT=Y � sT 0
X , as noted above. With

Eq. (18), this implies that the condition

Y � j1=2

s5=4ðgbT 0
X Þ

1=4ð1� Pr1=2Þ1=4
; ð24Þ

has to be met. If Y K Y c;e, where Y c;e ¼ j1=2s�5=4�
ðgbT 0

X Þ
�1=4ð1� Pr1=2Þ�1=4, the flow development will behave

the same as that in the non-stratified case [34] which is two-
dimensional and Y dependent, as sketched in Fig. 3. There-
fore, Y c;e represents the change-over height at which the
one-dimensional flow development becomes two-dimen-
sional. Hence, the scaling laws (17)–(21) are only valid
for Y � Y c;e.
2.2. At steady state

After t > tT ;e, the conduction–convection balance domi-
nates in Eq. (4), which gives,

V msT 0
X � j

DT

D2
T

� j
T 0

X DT

D2
T

� j
T 0

X

DT
; ð25Þ

that is,

DT �
j

sV m
: ð26Þ

It should be noted that DT is no longer governed by j1=2t1=2

for t > tT ;e, but Dv is still governed by m1=2t1=2.
It is now also necessary to consider the buoyancy term

over the whole layer, that is,

V m � gbT 0
X DT t; ð27Þ

which holds until the flow attains steady state. At steady
state, DT � Dv � m1=2t1=2, which, together with Eq. (26),
gives the time scale ts to attain steady state,

ts �
1

s1=2Pr1=2ðgbT 0
X Þ

1=2
: ð28Þ
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Hence at steady state, that is when t > ts, the thermal
boundary-layer thickness becomes

DT ;s � m1=2t1=2
s � m1=2

s1=4Pr1=4ðgbT 0
X Þ

1=4
; ð29Þ

which is also valid for both the steady-state inner and
whole velocity boundary-layer thicknesses Dvi;s and Dv;s,
the plate temperature T w;s becomes

T w;s � T 0
X DT ;s �

T 0
X m1=2

s1=4Pr1=4ðgbT 0
X Þ

1=4
; ð30Þ

and the maximum velocity becomes

V m;s � gbT 0
X m1=2t3=2

s � ðgbT 0
X Þ

1=4m1=2

s3=4Pr3=4
: ð31Þ

As ts=tT ;e � ð1� Pr1=2Þ1=2
=Pr1=2 > 1 for Pr < 1, the maxi-

mum velocity V m for tT ;e < t < ts is, from Eqs. (26) and
(27), as follows:

V m �
ðgbT 0

X Þ
1=2j1=2t1=2

s1=2
: ð32Þ

The condition T 0
X DT=Y � sT 0

X , with Eq. (29), implies that

Y � m1=2

s5=4Pr1=4ðgbT 0
X Þ

1=4
; ð33Þ

therefore, all the scaling laws obtained above for the steady
state, that is Eqs. (29)–(31), are only valid when Y � Y c;s,
where Y c;s ¼ m1=2s�5=4Pr�1=4ðgbT 0

X Þ
�1=4, similar to Y c;e, rep-

resents the change-over height at which the steady-state
one-dimensional flow development becomes two-
dimensional.
2.3. At the transitional stage

For flows in a stratified fluid, oscillations will be present
at the transitional stage, as observed above, which have the
Brunt-V€ais€al€a frequency N [33] given by,
N ¼ gb
oT ðY Þ

oY

� �1=2

¼ s1=2ðgbT 0
X Þ

1=2
: ð34Þ

Hence, the oscillations have the following period:

tp ¼
2p
N
� 1

s1=2ðgbT 0
X Þ

1=2
: ð35Þ

This relation is then the scaling law for tw;p, tm;p, tT ;p, tv;p,
and tvi;p.

The amplitudes of the oscillations (‘‘overshoots”) are
scaled with the difference between the values of the param-
eters Tw, Vm, DT, Dv, and Dvi at the end of the start-up stage
and those at steady state, which are apparently Pr depen-
dent. For example, the amplitude of the oscillation pre-
sented in the time series of the wall temperature is scaled
with ðT w;e � T w;sÞ, and the scaling laws (20) and (30) show
that

T w;e

T w;s
� 1

Pr1=4ð1� Pr1=2Þ1=4
; ð36Þ

indicating that smaller Pr fluids will have larger ‘‘over-
shoots” at the transitional stage.

2.4. Non-dimensionalized scaling laws

The scaling laws obtained above can be made dimen-
sionless by appropriate characteristic length, velocity, time
and temperature scales featuring the flow. It is natural,
from Eqs. (29)–(31), to choose L ¼ m1=2s�1=4Pr�1=4�
ðgbT 0

X Þ
�1=4, V 0 ¼ m1=2ðgbT 0

X Þ
1=4s�3=4Pr�3=4, L=V 0, and T 0

X L
as the respective characteristic length, temperature, time,
and velocity scales for the flow considered. With these
characteristic scales, the scaling laws obtained above can
be made dimensionless as follows.

During the start-up stage, the scaling laws (5), (6), (7),
and (11) will have the following dimensionless forms:

dT ¼
DT

L
� s1=2s1=2; ð37Þ

hw ¼
T w

T 0
X L
� dT � s1=2s1=2; ð38Þ

dvi ¼
Dvi

L
� Pr1=2s1=2s1=2; ð39Þ

vm ¼
V m

V 0

� s3=2Prð1� Pr1=2Þs3=2; ð40Þ

where s ¼ t=ðL=V 0Þ is the dimensionless time. Apparently
Eq. (37) or (38) will also be applicable to the dimensionless
dv ¼ Dv=L. It should be noted, as noted above, that the
scaling laws (37)–(40) are valid for t < tT ;e, or in non-
dimensional term for s < sT ;e, where, from Eq. (17),

sT ;e ¼
tT ;e

ðL=V 0Þ
� 1

sPr1=2ð1� Pr1=2Þ1=2
: ð41Þ

At the end of the start-up stage of the thermal boundary
layer development (that is at sT ;e), the scaling laws (18)–
(21) will have the following dimensionless forms
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dT ;e ¼
DT ;e

L
� 1

Pr1=4ð1� Pr1=2Þ1=4
; ð42Þ

vT ;e ¼
V T ;e

V 0

� Pr1=4ð1� Pr1=2Þ1=4
; ð43Þ

hT ;e ¼
T T ;e

T 0
X L
� 1

Pr1=4ð1� Pr1=2Þ1=4
; ð44Þ

dvi;T ;e ¼
Dvi;T ;e

L
� Pr1=4

ð1� Pr1=2Þ1=4
: ð45Þ

Again Eqs. (42) or (44) will also be applicable for the
dimensionless dv;T ;e ¼ Dv;T ;e=L. It is also expected that Eq.
(41) will be applicable to the dimensionless form of tw;e,
tm;e, tv;e, and tvi;e, that is to sw;e ¼ tw;e=ðL=V 0Þ, sm;e ¼
tm;e=ðL=V 0Þ, sv;e ¼ tv;e=ðL=V 0Þ, and svi;e ¼ tvi;e=ðL=V 0Þ.

As ts is generally larger than tT ;e and tm;e > tT ;e for the
Pr < 1 fluids considered here, as will be shown in Section
4, the dimensionless maximum velocity vm for tT ;e <
t < tm;e when tm;e 6 ts (or in dimensionless form, for sT ;e <
s < sm;e when sm;e 6 ss) is, from Eq. (32), as follows:

vm � s1=2Pr1=2s1=2: ð46Þ

When t > ts, that is when s > ss, the development will at-
tain steady state, as noted above, where ss, from Eq. (28),
is,

ss ¼
ts

ðL=V 0Þ
� 1

sPr
: ð47Þ

At steady state, the scaling laws (29)–(31) will have the fol-
lowing dimensionless forms

dT ;s ¼
DT ;s

L
� 1; ð48Þ

hw;s ¼
T w;s

T 0
X L
� 1; ð49Þ

vm;s ¼
V m;s

V 0

� 1; ð50Þ

Eqs. (48) or (49) will also be applicable to the dimensionless
form of Dv;s and Dvi;s, that is to dv;s ¼ Dv;s=L and
dvi;s ¼ Dvi;s=L.

The dimensionless period sp for the oscillations pre-
sented at the transitional stage will have the following
form:

sp ¼
tp

ðL=V 0Þ
� 1

sPr1=2
; ð51Þ

which will also be the scaling law for the dimensionless
form of tw;p, tm;p, tT ;p, tv;p, and tvi;p, that is for sw;p ¼ tw;p=
ðL=V 0Þ, sm;p ¼ tm;p=ðL=V 0Þ, sT ;p ¼ tT ;p=ðL=V 0Þ, sv;p ¼ tv;p=
ðL=V 0Þ, and svi;p ¼ tvi;p=ðL=V 0Þ.

The dimensionless change-over heights yc;e and yc;s are

yc;e ¼
Y c;e

L
¼ 1

sPr1=4ð1� Pr1=2Þ1=4
; ð52Þ

yc;s ¼
Y c;s

L
¼ 1

s
: ð53Þ
From these scaling laws, it is seen that the boundary-layer
development is one-dimensional and is independent of y if
y � yc;e and y � yc;s, as noted above. As stated before, our
current study is focusing in this one-dimensional flow
regime.
2.5. Analytical solution at steady state

The governing equations (1)–(4) can be recast in non-
dimensional form as follows using V0, L, T 0

X L, L=V 0 and
qV 2

0 as the characteristic velocity, length, temperature, time
and pressure scales respectively,

us þ uux þ vuy ¼ �px þ
1

Re
ðuxx þ uyyÞ; ð54Þ

vs þ uvx þ vvy ¼ �py þ
1

Re
ðvxx þ vyyÞ þ

1

Re
h; ð55Þ

ux þ vy ¼ 0; ð56Þ

hs þ uhx þ vhy þ v
1

RePr
¼ 1

RePr
ðhxx þ hyyÞ; ð57Þ

where Re ¼ 1=ðsPrÞ is the Reynolds number, u, v, x, y, p, s,
and h are the dimensionless forms of U, V, X, Y, P, t, and
T, respectively.

At steady state, the temperature and velocity fields is
independent of y when y � yc;s and the flow considered
here is in the one-dimensional regime, as shown above.
The scaled Eqs. (54)–(57) will allow all y derivative terms
to be dropped and the following analytical solution to be
obtained [26]

vðxÞ ¼
ffiffiffi
2
p

e�x=
ffiffi
2
p

sin � xffiffiffi
2
p

� �
; ð58Þ

hðxÞ ¼
ffiffiffi
2
p

e�x=
ffiffi
2
p

cos � xffiffiffi
2
p

� �
: ð59Þ

From this solution, it is expected that the dominant param-
eters will have the following values at steady state,

hw;s ¼
ffiffiffi
2
p
¼ 1:414 at x ¼ 0; ð60Þ

dT ;s ¼
ffiffiffi
2
p p

2
¼ 2:221 when h ¼ 0; ð61Þ

vm;s ¼
ffiffiffi
2
p

e�p=4 sin
p
4

� �
¼ 0:455 at x ¼

ffiffiffi
2
p p

4
¼ 1:111;

ð62Þ

dvi;s ¼
ffiffiffi
2
p p

4
¼ 1:111 when v ¼ vm;s; ð63Þ

dv;s ¼
ffiffiffi
2
p

p ¼ 4:443 when v reduces to 0: ð64Þ

Nevertheless, in the subsequent DNS we will define the
locations when hw ¼ 0:05hw;s and v ¼ 0:05vm;s as the ther-
mal boundary-layer thickness dT and the whole velocity
boundary-layer thickness dv respectively due to the numer-
ical consideration. It is then expected that at steady state
dT ;s and dv;s will have the following values,

dT ;s ¼ 1:940 when h ¼ 0:05hw;s; ð65Þ
dv;s ¼ 4:040 when v ¼ 0:05vm;s: ð66Þ
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Comparing the scaling laws (48)–(50) with the analytical
scales (65), (66), (62), (60), and (63), it will be found that
our steady-state scaling laws obtained from the scaling
analysis are apparently in line with the analytical solution.

The analytical solution at steady state will be used in the
subsequent sections to benchmark the DNS results and to
validate our steady-state scaling laws obtained from the
scaling analysis.
3. Numerical methods and benchmark

3.1. Initial and boundary conditions

To minimize the effect of the boundaries in the DNS, the
computational domain shown in Fig. 4 is used in the sim-
ulations, where an extra region with a height of he ¼ 50
and a width of lw ¼ 200 has been added to both the top
and the bottom boundaries and the following initial and
boundary conditions have been used,

u ¼ v ¼ 0; h ¼ 0 at all x; y when s < 0;

and

u ¼ v ¼ 0; hx ¼ 0 at x ¼ 0; �he 6 y 6 0;

u ¼ v ¼ 0; hx ¼ 1 at x ¼ 0; 0 6 y 6 hp;

ux ¼ vx ¼ hx ¼ 0 at x ¼ lw; �he 6 y 6 hp;

u ¼ v ¼ 0; hy ¼ 0 at 0 6 x 6 lw; y ¼ �he;

uy ¼ vy ¼ hy ¼ 0 at 0 6 x 6 lw; y ¼ hp when s P 0:
3.2. Numerical algorithm

The governing equations are discretized on a non-stag-
gered mesh using finite volumes, with standard second-
order central difference schemes used for the viscous, pres-
sure gradient and divergence terms. The QUICK third-
order upwind scheme is used for the advective terms. The
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Fig. 4. Computational domain and initial and boundary conditions for
the direct numerical simulations.
second-order Adams–Bashforth scheme and Crank–Nicol-
son scheme are used for the time integration of the advec-
tive terms and the diffusive terms, respectively. To enforce
continuity, the pressure correction method is used to con-
struct a Poisson’s equation which is solved using the pre-
conditioned GMRES method. Detailed descriptions of
these schemes were given in [35] and the code has been
widely used for the simulation of a range of buoyancy
dominated flows, such as travelling waves in natural con-
vection in a cavity [36] and weak fountain flows [37,38].

To ensure that a sufficiently high resolution is main-
tained in the numerical simulations, a non-uniform compu-
tational mesh has been used which concentrates points in
the boundary layer and near the boundaries and is rela-
tively coarse in the interior of the domain. Specifically,
the mesh is constructed using a stretched grid, with nodes
distributed symmetrically with respect to the half-width
and half-height of the computational domain shown in
Fig. 4. The nearest grid point is located 0.035 from the
domain boundaries in the x-direction and 0.09 in the y-
direction. Subsequently, the mesh expands at a fixed rate
of 2.5% in the x-direction and 1.2% in the y-direction up
to x ¼ y ¼ 10. After that, the mesh size expansion rate
decreases at a rate of 10% until it reaches zero, resulting
in 396 � 398 grid points with a constant coarser mesh in
the interior of the domain. The time-step used in the simu-
lations is 0.01. An extensive mesh and time-step depen-
dency analysis has been carried out to ensure that the
solutions are grid-free and accurate.
3.3. Benchmark

As stated in Section 2.5, it is expected that accurate
DNS results from the scaled equations, in the region
y � yc;s, should match the exact solution (58) and (59).
Fig. 5 contains the DNS results and the exact solution of
the horizontal profiles of the vertical velocity and tempera-
ture at Re = 1 (with s = 10 and Pr = 0.1), 10 (with s = 1
and Pr = 0.1) and 100 (with s = 1 and Pr = 0.01) respec-
tively in the upper, y independent, region of the flow. A
quantitative comparison between numerical and exact solu-
tions for temperature h at the specific location x ¼ 0:01 and
maximum vertical velocity vm within the boundary layer at
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Fig. 5. Numerical vertical velocity and temperature profiles at Re = 1
(with s = 10 and Pr = 0.1), 10 (with s = 1 and Pr = 0.1) and 100 (with
s = 1 and Pr = 0.01), respectively, compared to the exact solution.



Table 1
A comparison between numerical and exact solutions for temperature h at
the specific location x ¼ 0:01 and maximum vertical velocity vm within the
boundary layer at Re = 1 (with s = 10 and Pr = 0.1), 10 (with s = 1 and
Pr = 0.1) and 100 (with s = 1 and Pr = 0.01), respectively

Re = 1 Re = 10 Re = 100
(s = 10,
Pr = 0.1)

(s = 1,
Pr = 0.1)

(s = 1,
Pr = 0.01)

hx¼0:01 Exact 1.400072 1.400072 1.400072
Numerical 1.400029 1.401752 1.402032
Error �0.0031% 0.12% 0.14%

vm Exact 0.455842 0.455842 0.455842
Numerical 0.455806 0.457459 0.457560
Error �0.008% 0.35% 0.38%
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these three Re’s is also presented in Table 1, which,
together with Fig. 5, clearly shows that the numerical solu-
tions match the analytic solution, indicating that the DNS
results are accurate.
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4. DNS results

In this section, the scaling laws obtained above are val-
idated and quantified by a series of DNS with selected val-
ues of Pr and s in the ranges of 0:01 6 Pr 6 0:5 and
0:2 6 s 6 5 with the resulting Reynolds number in the
range of 1 6 Re 6 100. The numerically quantified
steady-state scaling laws will also be tested against the
exact solution. A total of 10 DNS runs have been carried
out for this purpose, it ie, Runs 1–6 with Pr ¼ 0:01,
0.025, 0.05, 0.075, 0.1 and 0.5 while keeping s = 1
unchanged have been carried out to examine the Pr depen-
dence of the scaling laws, whereas Runs 7–10 and 5 with
s ¼ 0:2, 0.5, 2, 5, and 1 while keeping Pr ¼ 0:1 unchanged
are for the examination of the s dependence.

It should be noted that the wall temperature hw and the
thermal boundary-layer thickness dT have essentially the
same scaling relations with Pr and s at various stages of
the boundary-layer development, as shown above. In fact,
the DNS results show that the only differences between the
quantified scaling laws for hw and those for dT are their
respective values of the proportionality constants in the
scaling laws. To avoid repetition, only the DNS results
for hw are therefore presented here.
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Fig. 6. DNS results of hw plotted against s1=2s1=2 at the start-up stage (left
column) and at the transitional stage and steady state (right column): (a)
and (b) for the y variation with Pr ¼ 0:1 and s = 1; (c) and (d) for the s

variation with Pr ¼ 0:1 at y = 90; and (e) and (f) for the Pr variation with
s = 1 at y = 90. — (bold, left column), hw ¼ 1:085s1=2s1=2; and � � � (bold,
right column), hw;s ¼ 1:414.
4.1. Scaling laws for hw scales

The scaling laws for hw, hw;e, and hw;s are Eqs. (38), (44),
and (49), as obtained above, where hw, hw;e, and hw;s are
dimensionless wall temperatures during the start-up stage
(when s < sw;e), at the end of the start-up stage (when
s ¼ sw;e), and at steady state (when s > ss) respectively.
The scaling laws for sw;e and sw;p are Eqs. (41) and (51),
where sw;e and sw;p are respectively the dimensionless time
for the development of the wall temperature to come to
the end of the start-up stage and the dimensionless half-
period of the oscillation presented in the time series of hw

at the transitional stage.
Fig. 6 presents the DNS results of hw plotted against

s1=2s1=2 with the variations of y, Pr, and s during the
start-up stage and at the transitional stage and steady state.
Figs. 6a and b contain the DNS results with the y variation
for the specific case of Pr ¼ 0:1 and s = 1 (Run 5). The
results show that the scaled time series at y = 30, 50, 70,
and 90, which are much larger than yc;e and yc;s (1.96 and
1 respectively for this specific case), overlay each other,
clearly demonstrating that the development of hw at all
stages is independent of y and is one-dimensional when
y � yc;e and y � yc;s, which is in agreement with the scaling
law (38). The slight deviation of the scaled y = 10 series is
because the conditions y � yc;e and y � yc;s are not well
met. This y-independence is also true for the whole velocity
boundary-layer thickness dv, the inner velocity boundary-
layer thickness dvi, and the maximum velocity vm, as will
be shown below. Fig. 6a also show that the scaling s1=2

brings all five series onto a single straight line described
by

hw ¼ 1:085s1=2s1=2; ð67Þ

at the early start-up stage (when s < sw;e and s is not close
to sw;e), validating that s1=2 is the correct scaling in Eq. (38)
at this portion of the start-up stage. When s approaches sw;e

(i.e., at the later portion of the start-up stage), it is observed
that the scaled series, although still overlaying each other,
gradually deviate from the quantified scaling law (67). This
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deviation is the result of the shifting of the dominant
balance in Eq. (4) from the initial unsteady-conduction bal-
ance to the convection–conduction balance, as noted in the
scaling analysis. At the end of the start-up stage (when
s ¼ sw;e), all values of hw;e at different y have approximately
the same value of 2.110 and the scaled time series come to
the end of the start-up stage almost at the same time, with
sw;e ¼ 5:784, showing that sw;e is also independent of y

which is in line with the scaling law (41). At steady state
(when s > ss, according to Eq. (47), ss � 1=ðsPrÞ � 10 in
this specific case), all values of hw;s at different y approach
1.414, which is in fact the exact solution given by Eq. (60),
clearly showing that the DNS results are not only in agree-
ment with the scaling law (49), but also validated by the ex-
act solution.

Fig. 6c contains the DNS results with the s variation at
y = 90 when Pr ¼ 0:1 (Runs 5, 7–10) during the start-up
stage, showing that the s1=2 scaling brings all five time series
onto the same single straight line described by Eq. (67) at
the early start-up stage, which confirms that s1=2 is the cor-
rect scaling in the scaling law (38). At the end of the start-
up stage, all five scaled time series essentially reach the
same maximum value of 2.110, showing that hw;e is inde-
pendent of s, which agrees with the scaling law (44).
Fig. 6d contains the DNS results with the s variation at
y = 90 when Pr ¼ 0:1 at the transitional stage and the
steady state, showing that all five series with different s

approach the exact solution of hw;s ¼ 1:414 at steady state,
again confirming the scaling law (49).

Fig. 6e contains the DNS results with the Pr variation at
y = 90 when s = 1 (Runs 1–6) during the start-up stage,
showing that all six scaled time series with different Pr fall
onto the same single straight line described by Eq. (67) at
the early start-up stage. However, they reach the ends of
their individual start-up stages at quite different times
and their values of hw;e are also considerably different,
showing that hw;e and sw;e are Pr dependent, as predicted
by the scaling laws (44) and (41). Fig. 6f contains the
DNS results with the Pr variation at y = 90 when s = 1
at the transitional stage and the steady state, showing that
all six series with different Pr approach the exact solution
of hw;s ¼ 1:414 at steady state, confirming once more the
scaling law (49).

The Pr dependence of hw;e and sw;e, as predicted by the
scaling laws (44) and (41), are hw;e � Pr�1=4ð1� Pr1=2Þ�1=4

and sw;e � Pr�1=2ð1� Pr1=2Þ�1=2 respectively, which, along
with other scaling laws, are validated by the DNS results
as presented in Fig. 7. Fig. 7a shows that all values of
hw;e, with the variations of y, s and Pr, fall onto a single
straight line described by

hw;e ¼
1:051

Pr1=4ð1� Pr1=2Þ1=4
; ð68Þ

which confirms the scaling law (44). Similarly, Fig. 7b
shows that all values of sw;e with the variations of y, s

and Pr fall onto a single straight line described by
sw;e ¼
1:518

sPr1=2ð1� Pr1=2Þ1=2
; ð69Þ

which confirms the scaling law (41). The same time series
with the Pr variation presented in Fig. 6e are re-plotted
in Fig. 7c, but hw and s are now scaled by
Pr�1=4ð1� Pr1=2Þ�1=4 and s�1Pr�1=2ð1� Pr1=2Þ�1=2 which are
the scales for hw;e and sw;e respectively, as predicted by
the scaling laws (44) and (41). The scaled series are now ob-
served to attain approximately the same peak at almost the
same time, with slight deviations for the extreme values of
Pr considered, i.e., Pr = 0.01 and 0.5, and again all scaled
series with different Pr fall onto the same single straight line
described by Eq. (67) at the early start-up stage, once again
confirming the scaling laws (44) and (41). Fig. 7d shows
that all values of sw;p with the variations of y, s and Pr fall
onto a single straight line described by

sw;p ¼
3:569

sPr1=2
; ð70Þ

which confirms the scaling law (51).

4.2. Scaling laws for dv scales

As noted above, the scaling laws (38), (44), (49), (41) and
(51) are also valid for dv, dv;w;e, dv;s, sv;e and sv;p respectively,
where dv, dv;w;e, and dv;s are the dimensionless whole velocity
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boundary-layer thickness during the start-up stage of hw

(when s < sw;e), at the end of the start-up stage of hw (when
s ¼ sw;e), and at steady state of dv itself (when s > ss)
respectively, whereas sv;e and sv;p are the dimensionless time
for the development of dv to come to the end of its start-up
stage and the dimensionless half-period of the oscillation
presented in the time series of dv at the transitional stage.

Fig. 8 presents the DNS results of dv plotted against
s1=2s1=2 with the variations of y, Pr, and s during the
start-up stage and at the transitional stage and steady state.
Figs. 8a and b contain the DNS results with the y variation
for the specific case of Pr ¼ 0:1 and s = 1 (Run 5). Similar
to hw, it is observed that all series except that at y = 10
overlay each other, confirming that the development of dv

at all stages is also independent of y and is one-dimensional
when y � yc;e and y � yc;s. It is further found that all five
scaled series fall onto a single straight line described by

dv ¼ 2:134s1=2s1=2; ð71Þ

at the early start-up stage (when s < sv;e and s is not very
close to sv;e), validating that s1=2 is the correct scaling in
Eq. (38) at this portion of the start-up stage. When s ap-
proaches sv;e (that is at the later portion of the start-up
stage), it is observed that the scaled time series, excepting
the y = 10 series, although still overlaying each other, grad-
ually deviate from the quantified scaling law (71) due to the
shifting of the dominant balance in Eq. (4) as noted above
for hw. At the end of the start-up stage (when s ¼ sv;e), all
values of dv;e except that at y = 10 have approximately
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Fig. 8. DNS results of dv plotted against s1=2s1=2 at the start-up stage (left
column) and at the transitional stage and steady state (right column): (a)
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the same value of 6.279 and the scaled time series come
to the end of the start-up stage at almost the same time,
with sv;e ¼ 10:856, confirming that sv;e is also independent
of y which is in line with the scaling law (41). At steady
state (when s > ss), all values of dv;s at different y approach
4.040, which is the exact solution given by Eq. (66), clearly
showing that the DNS results are not only in agreement
with the scaling law (49), but also validated by the exact
solution.

Fig. 8c contains the DNS results with the s variation at
y = 90 when Pr ¼ 0:1 (Runs 5, 7–10) during the start-up
stage, showing that the s1=2 scaling brings all five series onto
the same straight line described by (71) at the early start-up
stage, confirming that s1=2 is the correct scaling in (38) for
dv. At the end of the start-up stage, all five scaled series
essentially reach the same maximum value of 6.279, vali-
dating that dv;e is independent of s. Fig. 8d contains the
DNS results with the s variation at y = 90 when Pr ¼ 0:1
at the transitional stage and the steady state, showing that
all five series with different s approach the exact solution of
dv;s ¼ 4:040 at steady state, again confirming the scaling
law (49).

Fig. 8e contains the DNS results with the Pr variation at
y = 90 when s = 1 (Runs 1–6) during the start-up stage.
Although it is observed that the scaling s1=2 brings all six
time series onto straight lines at the early start-up stage,
these lines do not overlay each other and the series reach
the ends of their individual start-up stages at quite different
times and have considerably varying values of dv;e, showing
that dv;e and sv;e are Pr dependent. The Pr dependence of
sv;e is predicted by the scaling law (41). Although it is
expected that dv at s ¼ sw;e, i.e., dv;w;e, is predicted by the
scaling law (44), it does not mean that this law will apply
for dv;e when it reaches the end of its own start-up stage
at s ¼ sv;e, as sv;e is usually much larger than sw;e (for exam-
ple, when Pr = 0.1 and s = 1, sw;e at y = 90 is 5.784, but sv;e

is 10.856). On the other hand, the scaling law (49) predicts
that dv;s � 1 at steady state (when s > ss), which is con-
firmed by the DNS results presented in Fig. 8f for y = 90
and s = 1, where it is shown that all six series with different
Pr approach the exact solution of dv;s ¼ 4:040 at steady
state.

As noted above, when the development of dv proceeds
from the end of the start-up stage of hw (i.e., dv;w;e) to steady
state (i.e., dv;s), the corresponding scaling law for dv will
change from (44), i.e., dv;w;e � Pr�1=4ð1� Pr1=2Þ�1=4 at
s ¼ sw;e to (49), i.e., dv;s � 1 at steady state (s > ss). It is
therefore expected that a combination of these two scalings
shall provide a correct prediction for dv;e at s ¼ sv;e if
sw;e < sv;e < ss, i.e., the scaling law for dv;e is expected to
be as follows:

dv;e �
1

Pr1=4ð1� Pr1=2Þ1=4
þ 1: ð72Þ

To verify the scaling law (72), the DNS results of dv;e are
plotted against ½1þ Pr�1=4ð1� Pr1=2Þ�1=4� in Fig. 9a for
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the variations of y, Pr, and s, which shows that all values of
dv;e fall onto a single straight line described by

dv;e ¼
2:127

1þ Pr�1=4ð1� Pr1=2Þ�1=4
; ð73Þ

confirming the scaling law (72).
The DNS results of sv;e are plotted against

s�1Pr�1=2ð1� Pr1=2Þ�1=2 in Fig. 9b for the variations of y,
Pr, and s, which shows that all values of sv;e fall onto a sin-
gle straight line described by

sv;e ¼
2:889

sPr1=2ð1� Pr1=2Þ1=2
; ð74Þ

confirming the scaling law (41).
The same time series with the Pr variation presented in

Fig. 8e are re-plotted in Fig. 9c, but here dv and s are scaled
by ½1þ Pr�1=4ð1� Pr1=2Þ�1=4� and s�1Pr�1=2ð1� Pr1=2Þ�1=2

which are the scales for dv;e and sv;e respectively. All series
except Pr ¼ 0:5 are observed to attain approximately the
same scaled peak at almost the same scaled time and fall
onto the same straight line described by

dv

1þ Pr�1=4ð1� Pr1=2Þ�1=4
¼ 1:478 sPr1=2ð1� Pr1=2Þ1=2s

h i1=2

;

ð75Þ

at the early start-up stage, further confirming the scaling
laws (72) and (41). However, it is also observed that the
scaled series with Pr ¼ 0:5 has a large deviation from the
quantified scaling. It should be noted that the scaling law
(72) is only valid for sw;e < sv;e < ss, as noted above, which,
with (41) and (47), requires

1

sPr1=2ð1� Pr1=2Þ1=2
<

1

sPr
; ð76Þ

i.e., Pr < ½ð
ffiffiffi
5
p
� 1Þ=2�2 which gives Pr < 0:382, and there-

fore the quantified scaling law (75) obtained above is only
valid for Pr < 0:382 and the observed large deviation for
the Pr ¼ 0:5 series is therefore not a surprise as it does
not meet the requirement of Pr < 0:382.

The DNS results of sv;p are plotted against s�1Pr�1=2 in
Fig. 9d for the variations of y, Pr, and s, which shows that
all values of sv;p fall onto a single straight line described by

sv;p ¼
3:413

sPr1=2
; ð77Þ

confirming that (51) is the correct scaling law for sv;p.

4.3. Scaling laws for vm scales

The scaling laws for vm, vm;w;e, vm;s, sm;e and sm;p are Eqs.
(40), (43), (50), (41) and (51) respectively, as obtained in the
scaling analysis, where vm, vm;w;e, and vm;s are dimensionless
maximum vertical velocity in the boundary layer during the
start-up stage of hw (when s < sw;e), at the end of the start-
up stage of hw (when s ¼ sw;e), and at steady state of vm

itself (when s > ss) respectively, whereas sm;e and sm;p are
the dimensionless time for the development of vm to come
to the end of its start-up stage and the dimensionless
half-period of the oscillation presented in the time series
of vm at the transitional stage.

Fig. 10 presents the DNS results of vm plotted against
s3=2Prð1� Pr1=2Þs3=2 with the variations of y, Pr, and s dur-
ing the start-up stage and at the transitional stage and
steady state. Figs. 10a and b contain the DNS results with
the y variation for the specific case of Pr ¼ 0:1 and s = 1
(Run 5), showing that the development of vm at all stages
is also independent of y and is one-dimensional when
y � yc;e and y � yc;s, the same as that for hw and dv. It is
also found that all five scaled series fall onto a single
straight line described by

vm ¼ 0:488s3=2Prð1� Pr1=2Þs3=2; ð78Þ
at the early start-up state (when s < sw;e and s is far away
from sm;e), validating that s3=2 is the correct scaling in Eq.
(40) at this portion of the start-up stage. Beyond sw;e, it is
observed that the scaled series, although still overlaying
each other with the exception of the y = 10 series, gradually
deviate from the quantified scaling law (78) due to the shift-
ing of the dominant balance in Eq. (4) as noted above for
hw. At the end of the start-up stage (when s ¼ sm;e), all val-
ues of vm;e except that at y = 10 have approximately the
same value of 0.606 and the scaled series come to the end
of the start-up stage almost at the same time, with
sm;e ¼ 10:935, confirming that sm;e is also independent of
y which agrees with the scaling law (41). At steady state
(when s > ss), all values of vm;s at different y approach
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0.455, which is the exact solution given by Eq. (62), clearly
showing that the DNS results are not only in agreement
with the scaling law (50), but also validated by the exact
solution.

Fig. 10c contains the DNS results with the s variation at
y = 90 when Pr ¼ 0:1 (Runs 5, 7–10) during the start-up
stage, showing that the s3=2 scaling brings all five series to
fall onto the same straight line described by Eq. (78) at
the early start-up stage, confirming that s3=2 is the correct
scaling in (40) for vm at this portion of the start-up stage.
At the end of the start-up stage, all five scaled series essen-
tially reach the same maximum value of 0.606, validating
that vm;e is independent of s. Fig. 10d contains the DNS
results with the s variation at y = 90 when Pr ¼ 0:1 at the
transitional stage and the steady state, showing that all five
series with different s approach the exact solution of
vm;s ¼ 0:455 at steady state, again confirming the scaling
law (50).

Fig. 10e contains the DNS results with the Pr variation
at y = 90 when s = 1 (Runs 1–6) during the start-up stage,
showing that at the early start-up stage (when s is much
smaller than sm;e) the scaling Prð1� Pr1=2Þ brings all series
to fall approximately onto the same line described by Eq.
(78), although slight deviations are observed for the
extreme values of Pr considered, i.e., for Pr = 0.01 and
0.5, which clearly demonstrates that Prð1� Pr1=2Þ is the
correct scaling for vm at the early start-up stage. The
DNS results also show that the series with different values
of Pr reach the ends of their individual start-up stages at
quite different times (i.e., at different values of sm;e) and
have considerably varied values of vm;e as well, showing
that vm;e and sm;e are Pr dependent. The Pr dependence of
sm;e is again predicted by the scaling law (41), the same as
that for sv;e. Although it is expected that vm at s ¼ sw;e,
i.e., vm;w;e, is predicted by the scaling law (43), however,
similar to dv;e, it does not mean that it will apply for vm;e

when it reaches the end of its own start-up stage at
s ¼ sm;e, as sm;e, like sv;e, is also usually much larger than
sw;e (in fact, as will be shown below, the DNS results dem-
onstrate that sm;e is essentially equal to sv;e for all values of s

and Pr considered. For example, for Pr = 0.1, s = 1 and
y = 90, sm;e ¼ 10:935 and sv;e ¼ 10:856. Both are much lar-
ger than sw;e which is 5.784). On the other hand, the scaling
law (50) predicts that vm;s � 1 at steady state (when s > ss),
which is confirmed by the DNS results presented in Fig. 10f
for y = 90 and s = 1, where it is shown that all six series
with different Pr approach the exact solution of
vm;s ¼ 0:455 at steady state.

As described in the scaling analysis, when the develop-
ment of vm proceeds from the end of the start-up stage of
hw (i.e., vm;w;e) to steady state (i.e., vm;s), the corresponding
scaling law for vm will change from (43), i.e.,
vm;w;e � Pr1=4ð1� Pr1=2Þ1=4 at s ¼ sw;e to (50), i.e., vm;s � 1
at steady state (s > ss). It is therefore expected that, similar
to dv;e, a combination of these two scalings shall provide a
correct prediction for vm;e at s ¼ sm;e if sw;e < sm;e < ss, i.e.,
the scaling law for vm;e is expected to be as follows:

vm;e � 1þ Pr1=4ð1� Pr1=2Þ1=4
: ð79Þ

To verify the scaling law (79), the DNS results of vm;e are
plotted against ½1þ Pr1=4ð1� Pr1=2Þ1=4� in Fig. 11a for the
variations of y, Pr, and s, which shows that all values of
vm;e fall onto a single straight line described by

vm;e ¼
0:408

1þ Pr1=4ð1� Pr1=2Þ1=4
; ð80Þ

confirming the scaling law (79).
The DNS results of sm;e are plotted against

s�1Pr�1=2ð1� Pr1=2Þ�1=2 in Fig. 11b for the variations of y,
Pr, and s, which shows that all values of sm;e fall onto a sin-
gle straight line described by

sm;e ¼
2:889

sPr1=2ð1� Pr1=2Þ1=2
; ð81Þ

which is in fact the quantified scaling law obtained above
for sv;e, confirming the scaling law (41) as well as demon-
strating that sm;e is essentially equal to sv;e for all values
of s and Pr considered, as noted above.

The same time series with the Pr variation presented in
Fig. 10e are re-plotted in Fig. 11c, but here vm and s are
scaled by ½1þ Pr1=4ð1� Pr1=2Þ1=4� and s�1Pr�1=2ð1�
Pr1=2Þ�1=2 which are scales for vm;e and sm;e respectively.
All series except the Pr ¼ 0:5 one are observed to attain
approximately the same scaled peak at almost the same
scaled time and fall onto the same straight line described by
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vm

1þ Pr1=4ð1� Pr1=2Þ1=4
¼ 0:166 sPr1=2ð1� Pr1=2Þ1=2s

h i1=2

:

ð82Þ

at the early start-up stage, further confirming the scaling
laws (79) and (41). The large deviation of the Pr ¼ 0:5 ser-
ies from this quantified scaling law is due to the same rea-
son as explained for dv, i.e., the quantified scaling law (82)
obtained above is valid for Pr < 0:382 only. The large devi-
ation of the Pr ¼ 0:5 data from the quantified scaling law
vm;e ¼ 0:408=½1þ Pr1=4ð1� Pr1=2Þ1=4�, as shown in Fig. 11a,
is due to the same reason.

The DNS results of sm;p are plotted against s�1Pr�1=2 in
Fig. 11d for the variations of y, Pr, and s, which shows that
all values of sm;p fall onto a single straight line described by

sm;p ¼
3:160

sPr1=2
; ð83Þ

confirming that (51) is the correct scaling law for sm;p.
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4.4. Scaling laws for dvi scales

The scaling laws for dvi, dvi;w;e, dvi;s, svi;e and svi;p are Eqs.
(39), (45), (49), (41) and (51) respectively, as obtained in the
scaling analysis, where dvi, dvi;w;e, and dvi;s are dimensionless
inner velocity boundary-layer thickness during the start-up
stage of hw (when s < sw;e), at the end of the start-up stage
of hw (when s ¼ sw;e), and at steady state of dvi itself (when
s > ss) respectively, whereas svi;e and svi;p are the dimen-
sionless time for the development of dvi to come to the
end of its start-up stage and the dimensionless half-period
of the oscillation presented in the time series of dvi at the
transitional stage.

Fig. 12 presents the DNS results of dvi plotted against
s1=2Pr1=2s1=2 with the variations of y, Pr, and s during the
start-up stage and at the transitional stage and steady state.
Figs. 12a and b contain the DNS results with the y varia-
tion for the specific case of Pr ¼ 0:1 and s = 1 (Run 5),
showing that the development of dvi at all stages is also
independent of y and is one-dimensional when y � yc;e

and y � yc;s, same as that for hw, dv and vm. It is also found
that all five scaled series fall onto a single straight line
described by

dvi ¼ 1:238s1=2Pr1=2s1=2; ð84Þ

at the early start-up state (when s < sw;e and s is far away
from svi;e), validating that s1=2 is the correct scaling in Eq.
(39) at this portion of the start-up stage. Beyond sw;e, it is
observed that the scaled series, although still overlaying
each other with the exception of the y = 10 series, gradually
deviate from the quantified scaling law (84) due to the shift-
ing of the dominant balance as noted above. At the end of
the start-up stage (when s ¼ svi;e), all values of dvi;e except
that at y = 10 have approximately the same value of
1.208 and the scaled series come to the end of the start-
up stage almost at the same time, with svi;e ¼ 14:104, con-
firming that svi;e is also independent of y which agrees with
the scaling law (41). At steady state (when s > ss), all
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values of dvi;s at different y approach 1.111, which is the ex-
act solution given by Eq. (63), clearly showing that the
DNS results are not only in agreement with the scaling
law (49), but also validated by the exact solution.

Fig. 12c contains the DNS results with the s variation at
y = 90 when Pr ¼ 0:1 (Runs 5, 7–10) during the start-up
stage, showing that the s1=2 scaling brings all five series to
fall onto the same straight line described by Eq. (84) at
the early start-up stage, confirming that s1=2 is the correct
scaling in (39) for dvi at this portion of the start-up stage.
At the end of the start-up stage, all five scaled series essen-
tially reach the same maximum value of 1.208, validating
that dvi;e is independent of s. Fig. 12d contains the DNS
results with the s variation at y = 90 when Pr ¼ 0:1 at the
transitional stage and the steady state, showing that all five
series with different s approach the exact solution of
dvi;s ¼ 1:111 at steady state, again confirming the scaling
law (49).

Fig. 12e contains the DNS results with the Pr variation
at y = 90 when s = 1 (Runs 1–6) during the start-up stage,
showing that at the early start-up stage (when s is much
smaller than svi;e) the scaling Pr1=2 brings all series to fall
onto straight lines, however, these lines do not overlay each
other and the series reach the ends of their individual start-
up stages at quite different times and have considerably
varied values of dvi;e, showing that dvi;e and svi;e are Pr

dependent. The Pr dependence of svi;e is again predicted
by the scaling laws (41). Similar to dv;e and vm;e, although
it is expected that dvi at s ¼ sw;e, i.e., dvi;w;e, is predicted by
the scaling law (45), however, it does not mean that it will
apply for dvi;e when it reaches the end of its own start-up
stage at s ¼ svi;e, as svi;e is usually much larger than sw;e

(for example, when Pr = 0.1 and s = 1, sw;e at y = 90 is
5.784, but svi;e is 14.104). On the other hand, the scaling
law (49) predicts that dvi;s � 1 at steady state (when
s > ss), which is confirmed by the DNS results presented
in Fig. 12f for y = 90 and s = 1, where it is shown that
all series with different Pr approach the exact solution of
dvi;s ¼ 1:111 at steady state.

Similar to dvo and vm, when the development of dvi pro-
ceeds from the end of the start-up stage of hw (i.e., dvi;w;e) to
steady state (i.e., dvi;s), the corresponding scaling law for dvi

will change from (45), i.e., dvi;w;e � Pr1=4ð1� Pr1=2Þ�1=4 at
s ¼ svi;e to (49), i.e., dvi;s � 1 at steady state (s > ss). It is
therefore expected that a combination of these two scalings
will provide a correct prediction for dvi;e at s ¼ svi;e if
sw;e < svi;e < ss, i.e., the scaling law for dvi;e is expected to
be as follows:

dvi;e � 1þ Pr1=4

ð1� Pr1=2Þ1=4
: ð85Þ

To verify the scaling law (85), the DNS results for dvi;e are
plotted against ½1þ Pr1=4ð1� Pr1=2Þ�1=4� in Fig. 13a for the
variations of y, Pr, and s, which shows that all values of
dvi;e fall approximately onto a single straight line described
by
dvi;e ¼
0:793

1þ Pr1=4ð1� Pr1=2Þ�1=4
; ð86Þ

confirming the scaling law (85).
The DNS results for svi;e are plotted against

s�1Pr�1=2ð1� Pr1=2Þ�1=2 in Fig. 13b for the variations of y,
Pr, and s, which shows that all values of svi;e fall onto a sin-
gle straight line described by

sm;e ¼
4:038

sPr1=2ð1� Pr1=2Þ1=2
; ð87Þ

confirming the scaling law (41).
The same time series with the Pr variation presented in

Fig. 12e are re-plotted in Fig. 13c, but here dvi and s are
scaled by ½1þ Pr1=4ð1� Pr1=2Þ�1=4� and s�1Pr�1=2ð1�
Pr1=2Þ�1=2 which are the scales for dvi;e and svi;e respectively,
showing that these scales bring all series with different Pr to
fall onto a single straight line described by

dvi

1þ Pr1=4ð1� Pr1=2Þ�1=4
¼ 0:446 sPr1=2ð1� Pr1=2Þ1=2s

h i1=2

:

ð88Þ
at the early start-up stage, further confirming the scaling
laws (85) and (41). The reason for the large deviation of
the Pr ¼ 0:5 series is the same as that noted above for dv

and vm, i.e., the quantified scaling law (88) obtained above
is also valid for Pr < 0:382 only. The large deviation of the
Pr ¼ 0:5 data from the quantified scaling law (86), as
shown in Fig. 13a, is due to the same reason.
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The DNS results of sm;p are plotted against s�1Pr�1=2 in
Fig. 13d for the variations of y, Pr, and s, which shows that
all values of sm;p fall onto a single straight line described by

sm;p ¼
3:160

sPr1=2
; ð89Þ

confirming that (51) is the correct scaling law for sm;p.
5. Conclusions

A set of scaling laws have been derived to describe the
basic features of unsteady natural convection boundary-
layer flow of an initially linearly-stratified fluid adjacent
to an evenly heated semi-infinite vertical plate with isoflux
boundary condition. The scaling laws have been developed
for fluids with Pr < 1 with the intention, in particular, of
determining the Pr effect for such flows, especially before
the flow attains the steady state. The scaling laws obtained
for the steady-state one-dimensional flow have been bench-
marked by the exact solution showing that they match the
exact solution. All the scaling laws have also been validated
by a series of direct numerical simulations which provide a
full description of the flow behavior.

The dominant parameters characterizing the flow behav-
ior are the plate temperature, maximum vertical velocity,
thermal boundary-layer thickness, whole and inner velocity
boundary-layer thicknesses, and the corresponding times at
various development stages. For stratified fluids like the
one considered here, oscillations will be present at the tran-
sitional stage, and their features are also of interest and
were investigated in this work. The scaling analysis shows
that the development of the boundary layer is independent
of y under the conditions that y � yc;e during the start-up
stage and y � yc;s at steady state, otherwise it is
y-dependent.

The velocity boundary layer consists of an inner and an
outer region that require separate scalings. In the inner
region the behavior of the velocity before attaining steady
state is determined by an unsteady-viscous balance in the
vertical momentum equation. In the outer region, however,
the velocity boundary layer is governed by an unsteady–
buoyancy balance, as has been verified.

The DNS results have verified the dependences of the
basic flow features on Pr and s and have also determined
the values of the various constants of proportionality pre-
sented in the scaling laws obtained from the scaling
analysis.
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